Mansoura University Faculty of Pharmacy Organic Chemistry Biomedical Engineering Code: MTH121 Final Exam 2014/2015 May 25, 2015 Time: 2 hours Total marks: 50 Total pages: 6 Question NO. I: (25 Marks, 60 min.) #### A) Check the following statements with $(\sqrt{})$ or (X): (5 Marks) | No. | Statement | Answer | |-----|---|------------| | 1 | In alkene, the double bond plays the role of the electrophile. | | | 2 | Rotation around σ bonds is restricted. | 01 5A1 350 | | 3 | Type of the bond that is formed between Na and Cl in NaCl is ionic bond. | | | 4 | Chlorination of benzene is performed in presence of AlCl ₃ as a Lewis base. | | | 5 | The carbonyl carbon (C=O) in ketone may be considered as an electrophilic site. | | | 6 | Compounds with Van der Waals forces have melting points higher than compounds with hydrogen bonding. | | | 7 | In cholesterol, the hydroxyl group is hydrophilic whereas the carbon skeleton is hydrophobic. | | | 8 | Hexane, CH ₃ (CH ₂) ₄ CH ₃ , is an organic solvent and considered as semi-polar solvent. | Life ton | | 9 | Conjugate base is the species formed from an acid when it donates a proton to a base. | | | 10 | Lewis base is defined as electron-pair donors and called electrophile. | | ### B) Give the scientific term for the following statements: (10 Marks) | No. | Statement | Scientific Term | |-----|--|-----------------| | 1 | The name of the product which forms during the reaction between benzene and a mixture of conc. HNO ₃ and conc. H ₂ SO ₄ . | | | 2 | The compound formed upon the condensation reaction between an alcohol and a carboxylic acid. | | | 3 | It is the intrinsic ability of an atom to attract the shared electrons in a covalent bond. | 60KG | | 4 | The compound formed upon the condensation reaction between an amine and a carboxylic acid. | | | 5 | An example of nanomaterials that has 2 dimensions (only length and breadth). | | | 6 | Hydration reactions add water and break bonds releasing energy and it is the reverse of condensation. | | | 7 | Polymers composed of monomer units known as nucleotides. | Vancani de la compania | |----|---|------------------------| | 8 | It is a polymer that turns to a liquid when heated and freezes to a very glassy state when cooled sufficiently. | | | 9 | C ₆₀ molecules by laser vaporization of graphite. | | | 10 | A solid particle in the 1-100 nm range that could be non-crystalline, an aggregate of crystallites or a single crystallite. | | | C) | Answer the | following o | questions with | drawing | structures | whenever | possible: | |----|------------|-------------|----------------|--------------------|------------|----------|-----------| | _ | | | THE STATE TIME | T CALL OF THE SALE | structures | WHEHEVEL | hossinic. | (10 Marks) | No | Question | Your Answer | |----|--|--| | 1 | Draw the product of the following reaction: Br ₂ | | | 2 | Chloroacetic acid (pKa = 2.86) and 3-chlorobutanoic acid (pKa = 4.0), which is more acidic and why? | The more acidic is | | 3 | What is product of this reaction? A or B or C Br CH ₃ CH ₂ OH A Br OH CC | | | 4 | What is the total number of σ -bonds and π -bonds in the following compound? | σ - bonds π -bonds | | 5 | Draw the net result of dipole moment (µ) of SO ₂ . (By drawing an arrow). | O | | 6 | Which compound in the following pair has the highest CH ₃ CH ₂ CHO or CH ₃ CH ₂ CH ₃ boiling point? | ed) (ragu tompó) kunog ma arit
yossay a ban lodosla na usavású (1932) | | 7 | Which is the most stable conformer, A or B? H CH ₃ or H CH ₃ A B | .beed includes a supplied of the spanning learning benonings self- | | 8 | What is the Lewis acid in the following reaction? CH ₃ BF ₃ + O CH ₃ CH ₃ H ₃ C O BF ₃ CH | mile seeme of the section sec | Question NO. II: (25 Marks, 60 min.) #### I) Write the correct choice either A or B letter in the answer column (5 Marks) | No. | Question | Answer | No. | Question | Answer | |-----|--|------------|-----|--|--------| | | Which is ribose sugar? | | | Reduction of benzoic acid by LiAlH ₄ gives: | | | 1 | HOHEC OH HOHEC OH B | shood vil | 6 | CH₂OH CHO A B | | | | Oxidation of benzyl alcohol by PCC gives: | Tability . | | Which is endohedral fullerene | ? | | 2 | сно соон | | 7 | | | | | А В | | | A B | | | 3 | Which is β-glucose? CH ₂ OH | | 8 | Which is a valine amino acid? H ₃ C, CH ₃ CH CH CH CH NH ₂ CHCOOH NH ₂ CHCOOH | | | | А В | | | А В | | | | Which is salicylic acid? | | | Which is acetamide? | | | 4 | COOH COOH | | 9 | H ₂ N CH ₃ H ₃ C CH ₃ | | | | А В | | | А В | | | | Which is polypropylene? | | | Which is polyacrylonitrile? | | | 5 | -(CH ₂ CH ₂) _n [CH ₂ CH(CH ₃)] _n - | | 10 | - $(CH_2CHCN)_n$ - $-[CH_2CH(C_6H_5)]_n$ | | | | А В | | | A B | | | No. | Statement | Scientific Term | |-----|---|-----------------| | 1 | Single-walled carbon nanotubes (SWNTs) encapsulating C ₆₀ . | | | 2 | Fullerene cages with encapsulated molecule have many potential applications. | | | 3 | The medical use of molecular-sized particles to deliver drugs, heat, light or other substances to specific cells in the human | | | 4 | A kind of sugar that considered as an animal storage product that accumulates in the liver. | | | 5 | The $(4n + 2) \pi$ electron rule for aromaticity. | | | 6 | A polysaccharide found in plant cell walls. | | | 7 | They are polymers which upon heating will chemically decompose, so they cannot be recycled. | | | 8 | They are composed of three fatty acids covalently bonded to one glycerol molecule. | | | 9 | Specific linear sequence of amino acids a polypeptide. | | | 10 | A polymer consists of adipic acid and hexamethylene diamine. | | III) Choose the best answer and write its letter in the right column: (5 marks) | | Jose the best answer was well | Answer | |-----|---|--------| | No. | The best reagent in the following transformation is $ \begin{array}{c cccc} CHO & CHO \\ \hline NO_2 & NH_2 \\ \hline A & FeSO_4/NH_4OH & B & H_2/Ni & C & NaNO_2/HCl & D & No answer \\ \hline \end{array} $ | | | 2 | Sucrose consists of A α -glucose + α -glucose + β -glucose B α -glucose + β -fructose C α -glucose + β -fructose D No answer | | | 3 | The best condition in the following reaction is HO—Br A Br ₂ /H ₂ O B Br ₂ /CS ₂ , 5 °C C Br ₂ /CS ₂ , 60 °C D No answer | | | 4 | The final product in the following conversion is $COOH$ $EtOH/H_2SO_4$ A OH B CH_2OH C CH_3 D $COOC_2H_5$ | | | | | - | | | | |----|--|---|--|--|--| | | 3-Maltose consists of | | | | | | 5 | | | | | | | 3 | α -glucose + β - B α -glucose + α - C α -glucose + β - D No answer | | | | | | - | glucose B glucose C galactose D No answer | | | | | | | | | | | | | | The reagent which gives the following reaction is | | | | | | | HOH₂C ← CHO + ············ → HOH₂C ← COOH | | | | | | 6 | - Horizo W-coon | | | | | | | 1101 | | | | | | | AlCl ₃ . B $Ag(NH_3)_2NO_3$ C PCC D KMnO ₄ | | | | | | | | | | | | | | hich of the following is histidine amino acid? | | | | | | | 0
H₂N-CHC-OH 0 | | | | | | 7 | H ₂ N-CHC-OH O H ₂ N-CHC-OH C H ₂ N-CHC-OH | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | N OH | | | | | | 1 | -NA | | | | | | | | | | | | | 8 | cooh | | | | | | 0 | le following compound is | | | | | | | palmitic acid B stearic acid C oleic acid D No answer | | | | | | | | | | | | | | ne chemical unit of PVC polymer is | | | | | | 9 | | | | | | | | B C D No answer | | | | | | | CI CI CH3 CH3 CH3 | | | | | | | | | | | | | | Br | | | | | | | The chamical range of the Cilleria | | | | | | 10 | e chemical name of the following compound is | | | | | | | 1,3,4-
B 1,2,4-
C 1,2,5-
D No answer | | | | | | | tribromobenzene B tribromobenzene C tribromobenzene D No answer | | | | | | | | | | | | # IV) Illustrate with drawing the type of the molecular structures of polymers and an example for each type (4 Marks) | Types | Linear | Cross-Linked | | | |---------|--------|--------------|---------------|--| | Example | | | polyurethanes | | | Drawing | | | | 00000000000000000000000000000000000000 | ## VI) Draw or write the missing parts to complete the following transformations: (6 marks) $$H_3C$$ CH_3 H_2O , heat MnO_4 H_2O , heat MnO_4 $Mno_$ | OHWA MI | 1 | 2 | 3 | |-----------|---|---------------------------------|--------------| | Draw | | | | | structure | | to online ontolizate stratiscal | | | or write | | | | | reagent | | | 910-010-15-H | | | HE ONG HAT I A | HIL-SHO-HAR THE | 16 | 2) | | 4 5 | 6 | |-----------|-----|---| | Draw | | | | structure | | | | or write | | | | reagent | | | | | | | *With my Best Wishes* Dr. Khalid B. Selim | Draft | | | | | |-------|--|--|--|--| |